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Abstract-The unsteady one-dimensional heat conduction equation is transformed into an ordinary 
differential equation called Kummer’s equation unifiedly in the linear, cylindrical and spherical coordinate 
systems. Kummer’s equation is solved in terms of the confluent hypergeometric functions and thus the 
similarity solutions are obtained. These solutions exist on the conditions that boundaries lie at the origin 
and infinity, or otherwise move with their positions proportional to the square root of time, and that the 
strength of heat source is a power function of time. For the already known similarity solutions expressed 
in terms of other functions, the corresponding confluent hypergeometric expressions are shown. If the 
conduction similarity solutions are applied to solve moving boundary problems with phase change, only 

one solution exists in each coordinate system. 

1. INTRODUCTION 

ENGINEERS and researchers often simplify actual com- 
plex heat conduction problems to one-dimensional 
problems. 

Under particular conditions, it is easy to solve one- 
dimensional heat conduction equations. Ribaud [I] 
pointed out that there exists a case where solving such 
an equation reduces to solving an ordinary differential 
equation. It is already known that the complementary 
error function and its repeated integrals satisfy the 
ordinary differential equation [2], and that the general 
solution can be expressed in terms of the Weber func- 
tion [3]. Henceforth, the resultant ordinary differ- 
ential equation is called the similarity equation, and 
its solution the similarity solution. 

Several similarity solutions are known besides those 
explained above. For example, there is a similarity 
solution expressed in terms of the exponential integral 
for heat conduction caused by a line heat source [4]. 
In addition, a similarity solution was reported for heat 
conduction due to a point heat source [4]. If these 
solutions are applied to solve the moving boundary 
problems, the exact solutions can be obtained [5]. 
These are included in few exact solutions to the mov- 
ing boundary problems [6]. 

In the present paper we find a unified expression for 
similarity solutions in linear, cylindrical and spherical 
coordinate systems. This includes not only known 
solutions but also unknown ones. Its application to 
the moving boundary problem is briefly explained. 

2. SIMILARITY EQUATION 

Letting T(r,t) denote temperature in a solid at a 
distance r from the origin and at time r, and K denote 
the thermal diffusivity of the solid, the one-dimen- 

sional heat conduction equation without the heat gen- 
eration term can be written as 

where s is the space dimension and is equal to 1,2 or 
3 for the linear, cylindrical or spherical coordinate 
system, respectively. 

The initial temperature in the solid is assumed to 
be zero. Then the initial condition is 

T=O at z=O. (2) 

The heat source is assumed to be located at the origin 
r = 0. Its strength q, is zero before the time r = 0, and 
subsequently varies. The heat source is temporarily 
assumed to be a plane heat source in the linear coor- 
dinate system, a line heat source in the cylindrical 
coordinate system and a point heat source in the 
spherical coordinate system. The strength of these 
heat sources is denoted by q”, q’ and q, respectively. 
The symbol q, is a generic notation for them. 

According to the definition of the heat sources, heat 
balance at the origin is written as follows : 

in the linear coordinate system 

in the cylindrical coordinate system 

in the spherical coordinate system 

(34 

(W 
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NOMENCLATURE 

A, A’ coefficient 
N parameter 
B, B’ coefficient 

variable 
similarity variable. 

h 
Ei 
erfc 

fn 
ierfc 
i” erfc 

K 
k 
L 
m 

T 

r,,, 

s/2 
exponential integral 
complementary error function 
function defined by equation (Bl) 
i” erfc with n = I 
II times repeated integral of 

complementary error function 
quantity defined in equation (75) 

positive integer or zero 
latent heat of phase change 
parameter defined by equation ( 17) or 

(17’) 
positive integer or zero 
order of magnitude 
power of power function of time 
strength of point heat source 
strength of heat source 
tirst derivative of r/, with respect to I 
strength of line heat source 
strength of plane heat source 
distance from origin 
position of moving boundary 
space dimension 
lemperature 
temperature at moving boundary 

Greek sy 

0’ 

0” 

f 
. 

5 
Y 

,mbols 
constant 
gamma function 
Euler’s constant 
dimensionless temperature defined by 
equation (5) or (5’) 
dimensionless quantity defined by 
equation (19) 
dimensionless temperature defined by 
equation (31) 
thermal diffusivity 
thermal conductivity 

J(k.,/h.h 
density 
reduced time defined by equation (4) or 
(4’) 
first derivative of T with respect to t 
second derivative of r with respect to t 
confluent hypergeometric function 
(Kummer’s function) 
confluent hypergeometric function of the 
second kind 
logarithmic derivative of gamma 
function (di-gamma function). 

To temperature at origin 

T. temperature of heat source Subscripts 
t time m on moving boundary 
11 variable I on boundary I or of phase I 
1’ function 2 on boundary 2 or of phase 2. 

(3c) 
Regarding them as independent variables and 0 as a 
function of r, 7, i i’ 9 7 ..* the heat conduction equation, 
namely equation (I), can be rewritten as 

where E. is the thermal conductivity. 
Reduced time r and dimensionless temperature 0 d@ dO 

are defined as 
(I-bZ)Ofrf--+frQ---+$-.’ 

I% ss 

(4) (8) 

where 

(5) It is noted that the following equations were used in 
deriving the above equation : 

4s . 1-f -=-- (9) 
(6) ‘IS 5 

The derivatives of the reduced time with respect to 
time are written as 

~=i~+i:~+... 
dt & i-i . (10) 

dr . d’s . . 
Z”?, Q=r,... (7) 

If the strength of the heat source is varied as a 
power function of time, namely 
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4. ‘x tp 

then the following relations hold : 

(11) 

t 1 
T=--, -, 

Pfl 
f= 

P+l 
i’=...=o. (12) 

Since + is constant, equation (8) simplifies to 

(l-bt)O+rig=-+g P-ldr 
( ) 

ao . (13) 

The dimensionless temperature is therefore a function 
of r and t with 6 and 5 as parameters. 

A dimensionless variable z is now introduced 

J ir 

-=5&j 
(14) 

and a solution 0 is considered which is a function of 
z alone. This type of solution is the similarity solution 
and can be written as 

0 = O(?, 6; 2). (15) 

It can be shown by substitution of equations (14) and 
(15) into equation (13) that the similarity solution 
satisfies the following ordinary differential equation, 
namely the similarity equation : 

$+(2:+?)$-2m@=O (16) 

where 

m+Zb=Z(p+l)-26. (17) 

By setting 

21 =x (18) 

@ = e-” 0’ (19) 

u=;+b=f=p+l 

equation (16) becomes 

(21) 

This similarity equation is the confluent hyper- 
geometric equation or Kummer’s equation. As a result 
of the above transformation, a new parameter a has 
been introduced in place of <. Accordingly, equation 
(15) is rewritten as 

0 = @(a, 6 ; 2). (22) 

Substituting equation (12) into equation (14) leads 
to a well-known expression for the similarity variable 
i : 

r 

;=zJ(lil). 
(23) 

Since 6 is equal to l/2 for uni-directional heat con- 
duction, equation (16) becomes 

-2m0 =O. 

This is the same similarity equation that Ribaud [I] 
gave. If m is zero. the complementary error function 

erfc (z) = -?- 
s 

I; 
e-“’ du (25) 

JR 2 

satisfies equation (24), and if m is a positive integer, 
the m times repeated integral of the complementary 
error function 

I 

I 
i” erfc (z) = i”- ’ erfc (u) du (26) 

satisfies it [2]. A general solution of equation (24) can 
be expressed in terms of the Weber function [3]. 

3. GENERAL SOLUTIONS OF THE SIMILARITY 

EQUATION 

It has been shown in the previous section that the 
similarity solution exists if the strength of the plane, 
line or point heat source is varied as a power function 
of time, and that the similarity equation reduces to 
the Kummer equation. namely equation (21). The 
general solution of the Kummer equation can be writ- 
ten as 

0’ = .1 @(a, 6 ; .r) + BY (a, 6 ; x) (27) 

where G(a, 6; X) is the confluent hypergeometric func- 
tion or Kummer’s function, Y(u, 6 ; x) is the confluent 
hypergeometric function of the second kind. and A 
and B are coefficients. Selected properties of these 
functions are listed in Appendix A. By substituting 
equation (27) into equation (19) and taking account 
of equations (22) and (IQ, the dimensionless tem- 
perature is expressed as 

0 = O(u,b;c) 

= A e-“@(a. b:?)+B e-“Y(u,b;-_‘). (28) 

Using equations (AS) and (A18) of Appendix A, 
the dimensionless temperature can also be written as 

0 = ?“-h’O(a-6+1,2-6;z). (29) 

Since 6 is equal to 3,,2 in the spherical coordinate 
system, the above equation becomes 

o&u-).+;z). 
z 

A problem in one-dimensional heat conduction in the 
spherical coordinate system can be changed into a 
problem in the linear coordinate system by the fol- 
lowing transformation : 

+40” 
ir . (31) 

Equation (30) is equivalent to this transformation if 
0” = 2Ju:@. 
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4. BOUNDARY CONDITIONS 

Let z, and zz denote the values of z on two bound- 
aries at r = r, and rz, respectively (r, is assumed to 
be less than rJ. The dimensionless temperature is 
generally a function of z, z, and zz. However, the 
similarity solution is such a limited solution that it 
is a function of z alone. Thus, only the following 
boundaries are permitted : 

r, =0 or z, = constant (32a) 

r2 = cc or z2 = constant. (32b) 

In other words, the boundaries must be located at 
the origin and infinity, or otherwise move with their 
positions proportional to the square root of time. 

It has already been assumed in Section 2 that a heat 
source is located at the origin. This assumption is 
consistent with the above condition on which the simi- 
larity solution exists. Therefore equation (3) can be 
used as the boundary condition at the origin. Rewrit- 
ing it with 0 and z gives the following equations : 

in the linear coordinate system (b = l/2) 

= -2Ja 

in the cylindrical coordinate system (b = 1) 

IimzdO- ’ 
r-o dz - - 5 

in the spherical coordinate system (b = 3/2) 

1 !.‘Tz2g= --* 
8aJa 

(334 

(33c) 

Another type of heat source is possible which gives 
the temperature at the origin To or the temperature at 
a moving boundary T,,, as a power function of time. 
If T, is a generic notation of these temperatures and r 
is a constant, the heat source is expressed as a boundary 
condition 

T, cc t*’ at 2 = Oora. (11’) 

In this case, the reduced time and dimensionless tem- 
perature are redefined as 

T,zdt (4’) 

(5’) 

Consequently, equations (12), (17), (20) and (33) 
must be replaced by 

t 1 

T=pmy 
f=-, f=...=O (12’) 

p’+ l/2 

2 
m=--1 

f (17’) 

1 
a=:+b-:=p’+b 

T (20’) 

O(a,b;z) = 1 at z=Oora (33’) 

respectively, and the first term on the left-hand side of 
equations (8) and (13) must be altered to (I -i/2)0. 

5. ONE-DIMENSIONAL HEAT CONDUCTION 

IN INFINITE OR SEMI-INFINITE SOLIDS 

One-dimensional heat conduction in semi-infinite 
or infinite solids is considered in this section. If a heat 
source is located at the origin, one of the boundary 
conditions is given by equation (33) or (33’). If tem- 
perature does not vary at infinity, another boundary 
condition is 

O=O at z=cc. (34) 

Differentiation of equation (28) with respect to z, 
taking account of equations (AIO) and (A12) of 
Appendix A, gives 

d@ 

dz= 
-2Ayre-“@(a,b+l;r’) 

-2Bze-“Y(a,b+l ;:‘). (35) 

The first term on the right-hand side of this equation 
is equal to zero for z = 0 (see equation (AlS) of 
Appendix A). If B is equal to zero, the right-hand side 
is equal to zero. This result means that the heat source 
does not supply heat, and therefore is meaningless. 
For a meaningful solution to exist, it is necessary that 

B # 0. (36) 

It can be seen from equations (A13) and (A14) of 
Appendix A that the following asymptotic expressions 
hold when z tends to infinity : 

e-‘2@(a, b;_,Z) _ z +vb, (37) 

e-“Y(a,b;z2) * 0 (38) 

where T(a) is the gamma function. If a is less than 6, 
the dimensionless temperature satisfies equation (34) 
for arbitrary values of A and B, and consequently, 
both coefficients or at least A cannot be determined. 
Thus, it is required that 

a>b (39) 

which, with the aid of equation (20) or (20’) reduces 
to 

p>b-1 or ~‘30. (40) 

On this condition, the coefficient A is obtained as 

A = 0. (41) 

The dimensionless temperature and its first derivative 
reduce to 

0 = Be-“Y(a,b;2’) (421 
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dQ 
-= -2&e-‘*Y(a,b+l;z2). 
dz 

(43) 

The coefficient B is determined by substituting equa- 
tion (43) into equation (33), or equation (42) into 
equation (33’). The details are explained below. 

5.1. &i-directional heat conduction in a semi-infinite 
solid due to a plane heat source 

Since b is equal to l/2, equation (43) becomes 

d@ 
- = -ZBze-‘*Y(a,j;z2). 
dz 

In the case of the plane heat source of strength q”, 
equation (33a) gives the boundary condition at z = 0. 
From the asymptotic expansion of the function Y 
near z = 0 (see equation (Al6c) of Appendix A), it is 
obvious that 

Ii-i zY(a, j; z2) = ~(a) - (45) 

Substituting equation (44) into equation (33a) and 
taking account of equations (45) and (20) gives 

JaW B=-= 
J(p+ l)W+ 1). 

JR Jn 
(46) 

This equation is substituted into equation (42) to give 
the solution as 

(47) 

It should be noted that the restriction of p 2 - l/2 is 
derived from equation (40). 

Let n be zero or a positive integer. In particular 
cases where the power is given by 

p = +(n- 1) (48) 

equation (47) becomes 

o _ J(n+l) - - Xr(!!+)e-:‘Y(+,i;z2). (49) 

By using the following relation, the proof of which is 
given in Appendix B 

$e-Z’Y(!$-!, f;z’) = 2”i”erfc(z) (50) 

equation (49) reduces to 

0 = 2”-‘;2J(n+ ip- !f+-! 
( > 

i”erfc(z). (51) 

This is the already known expression [7]. 
For another type of heat source which imposes the 

temperature variation at the plane at r = 0 or z = 0, 
equation (33’) is used as the boundary condition. Set- 
ting z = 0 in equation (42), combining it with equation 

(33’) and employing equations (Al6e) of Appendix A 
and (20’), the coefficient B is determined as 

B=Ir(a+f) - 
Jn 

-&(#+I). 
Jn 

(52) 

Therefore 

O-J* 
- -1-r(a+~)e-~‘Y(a,~;z2) 

=Ir@~+l)e-z2Y(p’+:,:;z2) 
Jn 

(53) 

where, from equation (40), the range of p’ is restricted 
asp’ 2 0. 

In particular, when the power is specified as 

p$ (54) 

equation (53) reduces to the well-known expression 

PI 

(55) 

5.2. Radial heat conduction in an infinite solid due to a 
line heat source 

Since b is equal to unity, equation (33b) gives the 
boundary condition at the origin. In a way similar to 
that in the previous section, the coefficient B and the 
dimensionless temperature are obtained as 

(56) 

r(a) 
Q=xe -” Y(a, 1 ; z2) 

I++l) 
=pe-‘*Y(p+l,l;z2) 

41[ (57) 

where, from equation (40), the range ofp is restricted 
asp>O. 

In particular, if p = 0, the already known solution 

14991 

1 
0=;i;;e-‘2Y(l,l;z2)= --&Ei(-z’) (58) 

is obtained, where Ei (- z2) is the exponential integral 
defined as 

-Ei(-z2) = (59) 

5.3. Radial heat conduction in an infinite solid due to a 
point heat source 

The parameter b is set equal to 312 and equation 
(33~) is used as the boundary condition at the origin. 



The coefficient and dimensionless temperature are applicable to solve the phase change problem, the 
determined as temperature in phase 1 can be expressed as 

B = r(a) up+ 1) -= 
817’ ‘Ja 87r”‘J(p+ I) 

(60) T, = ~(~,r,)‘-“o,(a,,b;_,) (67) 
I 

@= up+ 1) e-+yp+l.j;:‘) 
where -_, = r/[2J(k,t)]. Since the motion of the 

8n’ 2w!(p+ 1) 
boundary ought to obey equation (65). its temperature 
T, is obtained by setting Z, = a in the above equation 

Up+ 1) as 

= 8n’ Zv’l(p+ I): 
e-“Y(p+i. j::‘) (61) 

where p 2 l/Z must be satisfied. 
T,,, = ~(h.lT,)‘-‘O,(a,,b;?)* tP+‘-” = t@ (68) 

I 
In a particular case where where 

p = $1+ I) (62) p’=p+l-b. (69) 

equation (61) becomes As explained in Section 4. the temperature in phase 2. 

,t,- I 
which is caused by temperature variation at the mov- 

@= - 

n,‘(2n + 6): 
I- erfc (z). (63) ing boundary, can be expressed as 

Tz = TmOz(az,b;zz) (70) 
Setting n = 0 in this equation gives 

where :Z = r/[2J(K2t)]. It is obvious from equations 

Q= 
1 

~ ierfc (z). 
4,/(6x): 

(64) 
(20) and (20’) that 

a, =p+I (71) 

This is substantially the same solution that Paterson 
[4,5] derived and applied to the analysis of a moving 

a2 = p’+b. (72) 

boundary problem. It should be noted that p = l/2 Further, upon taking account of equation (69), the 

for n = 0, and hence equation (64) is the solution for following relation is derived: 

the case where the strength of the point heat source is 
varied as the square root of time but not as the step 

a, = a:. (73) 

function of time. Therefore both temperatures are expressed in terms 
of the same functions. 

When there is a phase change, few values are per- 
6. SIMILARITY SOLUTIONS TO MOVING mitted for p due to the restriction of equation (66). 

BOUNDARY PROBLEMS WITH PHASE CHANGE Substituting equations (67). (70) and (65) into equa- 

As explained in Section 4. if there are boundaries 
tion (66) and using equation (68) leads to 

other than the origin and infinity, they must be moving 
as the square root of time for the similarity solution 
to exist. If the value of z at a moving boundary at 
r = rm is denoted by :mr the above condition is rep- where 

resented as 

cm = r or rm = hJ(xt) (65) 

whether or not there is a phase change on the bound- 
ary. 

(75) 

Now let phases 1 and 2 be two different phases of 
and p = ,/(K,/K~). Since the right-hand side of equa- 

the same substance. A heat source of strength qs is 
tion (74) is constant, the following relation is necess- 

assumed to be at the origin, which is in phase 1. If 
ary for this equation to hold: 

there is a phase change on the boundary between p=6-I. (76) 

the phases, the boundary necessarily moves and its 
position is denoted by r,,,. Then the following con- 

Evidently, the temperature at the moving boundary 
must be constant. 

dition [lo] can be imposed at the moving boundary : As a summary, only one similarity solution exists 
in each coordinate system to the phase change 
problem. The corresponding heat source is q” zc l/,/t. 
namely To = constant in the linear coordinate system, 

where p is the density of the substance. L is the latent q’ = constant in the cylindrical coordinate system, 
heat of phase change, and subscripts 1 and 2 designate and q r ,/t in the spherical coordinate system. This 
phases I and 2. respectively. fact is already known [ 1 I]. 

If the similaritv sollltinn tn heat conrluction is also It is well known that there are solutions to the ohase 

1540 K. MIZUKAMI and K. FLTAGAMI 
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change problem in which the boundary moves with 
its position proportional to the square root of time. 
These solutions, including the Neumann solution [12], lo’ 
resdted from the application of the similarity solu- 11. 
tion. 

12. 

7. CONCLUSION 13. 

A unified expression has been presented for the 
similarity solutions of unsteady one-dimensional heat 

l4 
’ 

conduction equations in the linear, cylindrical and 
spherical coordinate systems. Its application to the 
moving boundary probIem has also been discussed. 

Provided that boundaries are located at the origin 
and infinity, or otherwise move as the square root of 
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New York (1980). 
M. N. Gzisik, Heur Conduction, pp. 406415. Wiley. 
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H. S. Carslaw and J. C. Jaeger. ~#n~lu~t~o?l of Hcor in 

Solids (2nd Edn). p. 285. Oxford University Press. 
Oxford (I959). 
L. J. Slater, Conjluenf Hypcrgeometric Functions. Cam- 
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N. N. Levedev, Special Functions and Their Applicatiotn 
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Hall. Englewood Cliffs, New Jersey (1965). 

APPENDIX A. SELECTED PROPERTIES OF 
CONFLUENT HYPERGEOMETRIC 

FUNCTIONS 

time, and in addition, the strength of the heat source 
is a power function of time, the heat conduction equa- 
tion can be transformed into an ordinary differential 
equation (simila~ty equation) called Kummer’s equa- 
tion. Its solution can be represented in terms of the 
confluent hypergeometric functions. 

Selected properties of the confluent hypergeomctrx func- 
tions are listed below. Those who reauire more details should 

The confluent hypergeometric solution has two par- 
ameters. One depends on the space dimension alone, 
the other mainly on the variation of the strength of 
the heat source. 

For the already known similarity solutions which 
are expressed in terms of other functions, the cor- 
responding confluent hypergeometric expressions 
have been shown. 

To apply the similarity solutions to solve a moving 
boundary problem is equivalent to premising the 
bounda~ moving as the square root of time. If there 
is a phase change on the moving boundary, only one 
similarity solution is permitted in each coordinate sys- 
tem. 
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t . Kummer ‘s fun~tiun and Kummer ‘s e~~turion 

Kummer’s function @(a, 6 : s) is defined as 

(Al) 

where h#O.-I. -2 . . . . . (& = 1, (U)k = i(U-tx-)j 
r(u) = a(a+ 1). .. (n+k- I). Kummer‘s functron is a par- 
ticular solution of Kummer’s equation 

If b it 2,3,4.. , the follouing function also satislk Kum- 
mcr’s equation : 

c = .r’-hiP(lin-b.2-h:.s). (A3) 

2. The eon~ttent h~pergeontetrief~ttoit of the second kind 

The function Y (a. 6 ; x) is defined as 

Y(o,b;x) = 
l-(1-b) 

l-(1 +a-& 
@(a. 6 ; .r) 

+T(b_l)s’-**(,+a__b -J 6. y) 

W) 
,_- . . . (A4) 

Evenifb=n+l with~=O,I,2,...,~tisanalyti~and~n 
be written as 

1 k’ (- l)‘(n-k- I)!@-n), .u*_“. (A5) 

+ r(a),_, k! 

For n = 0, the second term on the right-hand side of the 
above equation is set equal to zero. $(.I) is the di-gamma 
function or the logarithmic derivative of the gamma 
function, namely 

3. Generai solution of Kummrr i eqtcation 
The general solution of equation (AZ) can be written as 

c = A~(a,b;s)+BY(a.b;*) tA7) 

where A and B are coefficients. It may also be written as 

v = A’x’-*@(1+-a--6.2-b;x)+B’Y(a.h:x) (A8) 

where A’ and B’ are coefficients. 
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4. DiJierenliation formulae 

$W,b;x) =+z+l.bft;x) 

Y(n,b;x) = ,6’:--f\, + 0(x’-h). 

(A% 7. Kummer ‘s franrform 

$(e-“(P(a,b;x)) = -ye-‘@(a,b+1;x) 
Q(a.b;x) = e’@(b-a,b; -x). 

NO) 8. Other properties 

&Y(a.b;x) 

Y(a,b;x) = s’-“Y(l+a-b,2-b;x) 
= -aY(a+l,b+l;.r) (All) uqa.a;.r) = e” 

-&e-XY(a,b;.$~ = -e-“Y(a,b+t;x). (A12) 

5, Asymptotic expressions as x -+ co 

O(a.b;x) =$+--“{l+o(x-I)) (A13) 

Y(a,b;x) =x-“(1+0(x-‘)I. (Al4) 

6. Asymptotic expressions as x + 0 

@(a, b ; x) = I+ O(s). 

Ifb>2 

(Al9 

Y@, b ; xl 
Ub-1) r-6+Qfxb-i)~ 

=-&j-x 
WW 

Ifb-2 

Y(a, b ; x) r(b-l) ‘-b+@logx). 
=xX 

(A16b) 

IfZ>b> 1 

Ub- If Y(a,b;x) =-x 
W 

‘-*+(-j(l) (AISC) 

Ifb= I 

Y(u,b;x) = -~iirogx~~(.)+2~~~o(xlogx) 

(AW 

where y is Euler’s constant. 
If1 >b>O 

’ Y(& 4; x2) = erfc (x) 

e-‘%‘(I, 1 ;.x) = -Ei(-x). 

WW 

(A181 
(A19 

6420) 

(A2lf 

APPENDIX B. PROOF OF EWATION (50) 

Consider a function J,(z) defined as 

f.(z) =$2-.e-“Y(+;:‘) (Bl) 

where n is xero or a positive integer. If this function satisfies 
the relations 

f,(m) = 0 (B3) 

Jo(z) = erfc (2) (B4) 
then the follo~ng equation holds : 

f.(z) = i” erfc (2). (BS) 
Equation (B3) can readily he verified by using one of 

the asymptotic expressions of the confluent hypergeometric 
function of the second kind, namely equation (A14) of 
Appendix A. Equation (B4) is apparent from equation 
(A20). 

Differentiating both sides of equation (Bl) and a~an~ng 
it gives 

= -fn_ I(Z). W 
Thus f,(z) satisfies equations (B2)-(B4). Therefore, equation 
(BS) and accordingly equation (50) of the text hold. 

SOLUTIONS CONFLUENTES ~YPERGEOMETRIQUES DE L’EQUATION DE LA 
CHALEUR 

R6sum&L’Cquation de la conduction thermique monodimensionnelle variable est transformhe en une 
equation appelft equation de Kummer dans les systemes liniique, cylindrique et sphirique. L’iquation de 
Kummer est resolue en termes de fonctions confluentes hypergeomttriques et on obtient ainsi des solutions 
de similar&C. Ces solutions existent a condition que les front&es soient a l’origine et B l’infini, ou aussi se 
diplacent pro~rtionnellement au car& du temps et que l’intensite de la source de chaleur soit une fonction 
puissance du temps. Pour les solutions de similaritb deja connues en termes d’autres fonctions, on connait 
ies expressions des fonctions hypergeometriques confluentes. Si les solutions de similarit& sont appliquees 
aux probltmes a frontidre mobile avec changement de phase, il existe seulement une solution unique dans 

chaque systeme de coordonnees. 
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ZUSAMMESHANGENDE HYPERGEOMETRISCHE Lt)SUNGEN DER 
WARMELEITGLEICHUNG 

Zusammenfassung-Es uird die instationlre emdtmensionale W&-meleitgleichung fur kartesische, Zylinder- 
und Kugelkoordinaten in eine gewiihnliche Differentialgleichung transformiertdie Kummer’sche Gleich- 
ung. Die Losung der Kummer’schen Gleichung wird in Form zusammenhiingender hypergeometrischer 
Funktionen angegeben. Damit erhalt man Ahnlichkeitsliisungen. Diese Liisungen existieren unter fol- 
genden Bedingungen: Die Kopergrenzen liegen bei Null und Unendlich. oder aber sie bewegen sich 
proportional mit der Wurzel der Zeit ; die Ergiebigkeit der Wiirmequelle ist eine Potenzfunktion der Zeit. 
Fiir bereits bekannte Ahnlichkeitslosungen werden die entsprechenden hypergeometrischen Ausdriicke 
angegeben. Fiir den Fall. da6 die Ahnlichkeitslosungen der Warmeleitung auf Probleme mit Phasen- 

lnderung angewandt werden. existiert lediglich eine Losung in jedem Koordinatensystem. 

CXO~~kiEC~ l-WlTEPFEOMETPM9ECKME PEBIEHMlI YPABHEHMR 
TElTJIOlTPOBO~HOCTM 

~orarma_Hec’rauHoHapHoe ypaBHeHHe TennonpoBOiniocTH npe.o6paaye_rca B O~~~KHOB~HHO~ nH@$e+ 
~HUHUIbHOe, TaK Ha3MBt3eMOe WBHeHHe KyMMepa B CHcTeMaX tlpffMO~OIlbHbIX, =HHApHWCKHX ii 

C#pHWCKHX KOOpJJHHaT. nOq”ieHO PeUIeHHe y~BHeHHK KyMMepa C HCtlOnb!_lOBaHHeM CXO&HHHXCX 
tmsepreohrerpHvectHx t$ysrXmi& H rek4 cahfbrbr 0npeneneHbr anroh4onenbHbre pemeHHn. J@nibre 
PeUIeHHli CylWCTBytoT IIpH yCJlOBHH, ‘4TO rPi3HHIIbl HBXOlUITCX B HaQJIe KOOpLUfHZlT H B 6ecIOHeqHOCTH 

HJIA Ye RBlmyTCX TaLHM 06pauo~, -ITO HX tlOJIOXteHHll Il~IlOpUHOHUlbHbi KBUpiWHObty KOpHlO A3 

BpMeHH, a TarYe IIpH yCJlOBHH. ‘IT0 MOUlHOCTb HCTOYHHKB TeMa RBJRCTCII CTeUeHHOit &liKHHefi 

BpeMeHH. Ilorra3aeb1 cooTBexrByrouUle cx0nnuute-a rHnepreoh4e-rpHHecrHe ~BBHCHMOCTX arm yre 
H3BeCTHblX aBTOMOAeAbHhlX PeUleHHii, BbtparteHHslX Yew DpyHe &HKUHH. B CnYgae l,pHMeHeHJ,X 

aBTOMOAeAbHblX FUIeHHti TeIlJlOll~BOAHoCTH aRll PeUleHHK WWI C IlOlIBH~Oii I-paHHUefi R @30BbM 

IlePeXOlIOM B KK*aOii CHCTeMe KOOPAHHKT C)‘lWCTBy~ TOJlbKO OAHO PeUIeHHe. 


