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Abstract—The unsteady one-dimensional heat conduction equation is transformed into an ordinary
differential equation called Kummer’s equation unifiedly in the linear, cylindrical and spherical coordinate
systems. Kummer’s equation is solved in terms of the confluent hypergeometric functions and thus the
similarity solutions are obtained. These solutions exist on the conditions that boundaries lie at the origin
and infinity, or otherwise move with their positions proportional to the square root of time, and that the
strength of heat source is a power function of time. For the already known similarity solutions expressed
in terms of other functions, the corresponding confluent hypergeometric expressions are shown. If the
conduction similarity solutions are applied to solve moving boundary problems with phase change, only
one solution exists in each coordinate system.

1. INTRODUCTION

ENGINEERS and researchers often simplify actual com-
plex heat conduction problems to one-dimensional
problems.

Under particular conditions, it is easy to solve one-
dimensional heat conduction equations. Ribaud [1]
pointed out that there exists a case where solving such
an equation reduces to solving an ordinary differential
equation. It is already known that the complementary
error function and its repeated integrals satisfy the
ordinary differential equation [2], and that the general
solution can be expressed in terms of the Weber func-
tion [3). Henceforth, the resultant ordinary differ-
ential equation is called the similarity equation, and
its solution the similarity solution.

Several similarity solutions are known besides those
explained above. For example, there is a similarity
solution expressed in terms of the exponential integral
for heat conduction caused by a line heat source [4].
In addition, a similarity solution was reported for heat
conduction due to a point heat source [4]. If these
solutions are applied to solve the moving boundary
problems, the exact solutions can be obtained {5].
These are included in few exact solutions to the mov-
ing boundary problems [6].

In the present paper we find a unified expression for
similarity solutions in linear, cylindrical and spherical
coordinate systems. This includes not only known
solutions but also unknown ones. Its application to
the moving boundary problem is briefly explained.

2. SIMILARITY EQUATION

Letting T(r,?) denote temperature in a solid at a
distance r from the origin and at time ¢, and x denote
the thermal diffusivity of the solid, the one-dimen-

sional heat conduction equation without the heat gen-
eration term can be written as

k 8, 8T\ oT
7—75;(" ‘a:)‘a O

where s is the space dimension and is equal to 1, 2 or
3 for the linear, cylindrical or spherical coordinate
system, respectively.

The initial temperature in the solid is assumed to
be zero. Then the initial condition is

T=0 at t=0. (2)

The heat source is assumed to be located at the origin
r = 0. Its strength g, is zero before the time ¢ = 0, and
subsequently varies. The heat source is temporarily
assumed to be a plane heat source in the linear coor-
dinate system, a line heat source in the cylindrical
coordinate system and a point heat source in the
spherical coordinate system. The strength of these
heat sources is denoted by ¢”, ¢’ and g, respectively.
The symbol g, is a generic notation for them.

According to the definition of the heat sources, heat
balance at the origin is written as follows:

in the linear coordinate system

oT .
—l(-aT)_o =q (3a)
in the cylindrical coordinate system
. aT !
lim 21tr< -2 737) =gq (3b)

in the spherical coordinate system
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NOMENCLATURE
A, A" coeflicient X variable
a parameter z similarity variable.
B, B cocfficient
b s/2

Ei exponential integral Greek symbols

) z constant

erfc  complementary error function r amma functi

A function defined by equation (B1) & ) ton
v Euler’s constant

ierfc i"erfcwithn =1
i"erfc n times repeated integral of
complementary error function

(0] dimensionless temperature defined by
equation (5) or (5)
o dimensionless quantity defined by

K uantity defined in equation (75 .
X quantity 9 (73) equation (19)
positive Integer or zero ®”  dimensionless temperature defined b
L latent heat of phase change tmen perature dehined by
) . equation (31)
m parameter defined by equation (17) or . DS
(7 K thermal diffusivity
L 2 thermal conductivity
n positive integer or zero . Sl k)
0 order of magnitude 4 e
n.p. power of power function of time p density
p-p powe 4 reduced time defined by equation (4) or
Y strength of point heat source @)
q. strength of heat source , - .
' . - . 7 first derivative of t with respect to ¢
q. first derivative of ¢, with respect to ¢ .. Lo .
; . i second derivative of T with respect to ¢
q strength of line heat source . .
" ] i) confluent hypergeometric function
g strength of plane heat source . .
. L. (Kummer’s function)
r distance from origin . .
- . b4 confluent hypergeometric function of the
P position of moving boundary .
. . d second kind
s space dimension . .
v logarithmic derivative of gamma
T lemperature . . .
. function (di-gamma function).
T,  temperature at moving boundary
T, temperature at origin
T, temperature of heat source Subscripts
t time m on moving boundary
1 variablc ] on boundary 1 or of phase 1
v function 2 on boundary 2 or of phase 2.
] S T Regarding them as independent variables and © as a
!'_ng 4nr-{ =4 Yk (3¢)  functionofr,,1,7,. .., the heat conduction equation,

namely equation (1), can be rewritten as
where 4 is the thermal conductivity.

i i i e 3]
Reduced time t and dimensionless temperature © (1 —=bH)O+1t o 42t 4 -
are defined as ot ot
L[ kKt & 00
= - d[ 4 = - ¥ ,
T q\.[)q’ 4) i ar(r E'r) ®)
AT T . . . .
Q= (5) Itis noted that the following equations were used in
9s deriving the above equation:
where s
qs -7
b=l © ¢ T ®
=5
The derivatives of the reduced time with respect to 6.(-'-) =1 Gq@ +fcf) +e (10)
time are written as ot ot ct
dt . dr If the strength of the heat source is varied as a
- =1, ——S=1T... (7) . .
de dr power function of time, namely
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q, < t* an
then the following relations hold :
! , ] .

T=m, T—m, = = (. (12)

Since 7 is constant, equation (8) simplifies to

. 00 k1t 0, 00
(l—br)®+rt5—r2b_‘ ar(r E) (13)

The dimensionless temperature is therefore a function
of r and ¢ with b and 7 as parameters.
A dimensionless variable z is now introduced

N Jir
B 2,/(x1)
and a solution @ is considered which is a function of

z alone. This type of solution is the similarity solution
and can be written as

O = 0(%,b;2).

(14)

(15

It can be shown by substitution of equations (14) and
(15) into equation (13) that the similarity solution
satisfies the following ordinary differential equation,
namely the similarity equation:

d’e 26b—1\dO
5+l 224+ — = -2mO =0  (16)
d- z dz
where
2
m=¥—2b=2(p+l)—2b. an
By setting
2t =x (18)
@=e¢"0 (19)
m 1
a=5+b=¥=p+l (20)
equation (16) becomes
d’e’ do’ ,
X e +(b—x)71}- —a® =0. @n

This similarity equation is the confluent hyper-
geometric equation or Kummer’s equation. As a result
of the above transformation, a new parameter a has
been introduced in place of 7. Accordingly, equation
(15) is rewritten as

© = 0O(a,b;2). 22)

Substituting equation (12) into equation (14) leads
to a well-known expression for the similarity variable

;
2/(xt)’

Since b is equal to 1/2 for uni-directional heat con-
duction, equation (16) becomes

23

- =
=

1537

d&*e de
- MO =
T TEE 2mO = 0.

(24)

This is the same similarity equation that Ribaud [1]
gave. If m is zero. the complementary error function

2 1

erfc(2) = ——j e “ du (25)
\/Tt =

satisfies equation (24), and if » is a positive integer,
the m times repeated integral of the complementary
error function

imerfc (2) = J i"~ ' erfc (u) du (26)
satisfies it [2]. A general solution of equation (24) can
be expressed in terms of the Weber function [3].

3. GENERAL SOLUTIONS OF THE SIMILARITY
EQUATION

It has been shown in the previous section that the
similarity solution exists if the strength of the plane,
line or point heat source is varied as a power function
of time, and that the similarity equation reduces to
the Kummer equation. namely equation (21). The
general solution of the Kummer equation can be writ-
ten as

O = AD(a.b;x)+B¥(a,b;x) @7

where ®(a, b ; x) is the confluent hypergeometric func-
tion or Kummer's function, W(a, 4 ; x) is the confluent
hypergeometric function of the second kind. and 4
and B are coeflicients. Selected properties of these
functions are listed in Appendix A. By substituting
equation (27) into equation (19) and taking account
of equations (22) and (18), the dimensionless tem-
perature is expressed as
© =0(ab;2)
=Ade Dby +Be T W(a,bisY).  (28)

Using equations (A8) and (A18) of Appendix A,
the dimensionless temperature can also be written as

O =" a-b+1,2-b;2). 29)

Since b is equal to 32 in the spherical coordinate

system, the above equation becomes
1 Ll

©=-0@-11;2). (30)

A problem in one-dimensional heat conduction in the

spherical coordinate system can be changed into a

problem in the linear coordinate system by the fol-
lowing transformation:

(Y

Equation (30) is equivalent to this transformation if
Q" =2/az0.
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4. BOUNDARY CONDITIONS

Let z, and z, denote the values of z on two bound-
aries at » = r, and r,, respectively (r, is assumed to
be less than r,). The dimensionless temperature is
generally a function of z, z, and z,. However, the
similarity solution is such a limited solution that it
is a function of z alone. Thus, only the following
boundaries are permitted :

(32a)
(32b)

r,=0 or 2z, =constant

r,=00 or z,=constant.

In other words, the boundaries must be located at
the origin and infinity, or otherwise move with their
positions proportional to the square root of time.

It has already been assumed in Section 2 that a heat
source is located at the origin. This assumption is
consistent with the above condition on which the simi-
larity solution exists. Therefore equation (3) can be
used as the boundary condition at the origin. Rewrit-
ing it with © and z gives the following equations:

in the linear coordinate system (b = 1/2)

doe
(d_z>,.-o = —2/a (33a)
in the cylindrical coordinate system (b = 1)
. de 1
e 5 = 5 e3)
in the spherical coordinate system (b = 3/2)
de 1
limz?— = — . 33¢
LR 8n,/a (33)

Another type of heat source is possible which gives
the temperature at the origin T, or the temperature at
a moving boundary T, as a power function of time.
If T, is a generic notation of these temperatures and «
is a constant, the heat source is expressed as a boundary
condition

z=0ora.

(11)

In this case, the reduced time and dimensionless tem-
perature are redefined as

2.,
I—T—EJ;T,dI

T
®=7,'

T,oct at

@)

(5
Consequently, equations (12), (17), (20) and (33)
must be replaced by

p _ 1
S+ T

T t=---=0 (12)

m=--—1 ar)
4
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(20

O(a,b;2)=1 at z=0o0ra (33)

respectively, and the first term on the left-hand side of
equations (8) and (13) must be altered to (1 —/2)0.

5. ONE-DIMENSIONAL HEAT CONDUCTION
IN INFINITE OR SEMI-INFINITE SOLIDS

One-dimensional heat conduction in semi-infinite
or infinite solids is considered in this section. If a heat
source is located at the origin, one of the boundary
conditions is given by equation (33) or (33"). If tem-
perature does not vary at infinity, another boundary
condition is

©=0 at (34)

Differentiation of equation (28) with respect to z,
taking account of equations (A10) and (Al2) of
Appendix A, gives

de b—a

@ -

zZ=C.

ze " Oa,b+1;21

—2Bze " W(a,b+1;2%). (35)

The first term on the right-hand side of this equation
is equal to zero for z =0 (see equation (AlS) of
Appendix A). If Bis equal to zero, the right-hand side
is equal to zero. This result means that the heat source
does not supply heat, and therefore is meaningless.
For a meaningful solution to exist, it is necessary that

B#0. (36)

It can be seen from equations (A13) and (A14) of
Appendix A that the following asymptotic expressions
hold when z tends to infinity :

~ F_(_b_) ~2Mta=b)

e~ ®(a, b;22) o)

(37

e~ W(a,b;22) ~ 0 (38)

where I'(a) is the gamma function. If a is less than 5,
the dimensionless temperature satisfies equation (34)
for arbitrary values of 4 and B, and consequently,
both coefficients or at least 4 cannot be determined.
Thus, it is required that

azb 39)
which, with the aid of equation (20) or (20), reduces
to

p=b—1 or p 20. (40)

On this condition, the coefficient A4 is obtained as
A=0. 40

The dimensionless temperature and its first derivative
reduce to

©=Be " Y(ab;:) (42)
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g@ = —2B=e" " W(a,b+1;2%).

-

“43)

The coefficient B is determined by substituting equa-
tion (43) into equation (33), or equation (42) into
equation (33°). The details are explained below.

5.1. Uni-directional heat conduction in a semi-infinite
solid due to a plane heat source

Since b is equal to 1/2, equation (43) becomes
s = —2Bze " ¥(a,1;2%).

dz

In the case of the plane heat source of strength ¢",
equation (33a) gives the boundary condition at z = 0.
From the asymptotic expansion of the function ¥
near z = 0 (see equation (A16c) of Appendix A), it is
obvious that

C)

Jr
F(—a . 45)

Substituting equation (44) into equation (33a) and
taking account of equations (45) and (20) gives
_ Jal(a) _ J@+DI(p+1)

Jr Jr
This equation is substituted into equation (42) to give
the solution as

lin‘} ¥(a,3;2%) =

B (46)

r s
0 =YUr@ sy,
Jr
1 1 2
_Y@HDTGHD gy
Jr
It should be noted that the restriction of p 2 —1/2 is
derived from equation (40).

Let » be zero or a positive integer. In particular
cases where the power is given by

@7

p=14n-1) (48)

equation (47) becomes
D) el Lol
0= N r 5 )¢ ¥ 50132 . (49)

By using the following relation, the proof of which is
given in Appendix B

\/Le-* \y("-;l %;22> =ierfe(x)  (50)
n

equation (49) reduces to

O =2""2/(n+ 1)F<#)i" erfc(z). (51)

This is the already known expression [7].

For another type of heat source which imposes the
temperature variation at the planeatr=0orz =0,
equation (33") is used as the boundary condition. Set-
ting z = Oin equation (42), combining it with equation
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(33) and employing equations (A16¢) of Appendix A
and (20°), the coefficient B is determined as

1

7 I +1). (52)

1
B=—T(a+}) =
Jr
Therefore

1
© = —(a+4)e " ¥(a,i;2?)
Jr

L rpene TR+ i) ()
Jn

where, from equation (40), the range of p’ is restricted
asp’ 20.
In particular, when the power is specified as

’

P = (54)

LS T

equation (53) reduces to the well-known expression

(8]
9__1_ nt+2 ~g(T bl e
—\/nr( 2 )e ( 2 ,2’z>

= 2~r("—*2'—2)i" erfe (2). (55)

5.2. Radial heat conduction in an infinite solid due to a
line heat source

Since b is equal to unity, equation (33b) gives the
boundary condition at the origin. In a way similar to
that in the previous section, the coefficient B and the
dimensionless temperature are obtained as

_T@ _Te+D

B =& (56)
0= %(:r’—)e-"\y(a, 1;29)
T+l . .
== ¢ Y(p+1,1;29) (57)

where, from equation (40), the range of p is restricted
asp 20

In particular, if p = 0, the already known solution
(4.9]

_ 1 -2 C o2y o . 2
@—4ne W(l,l,z)——‘TnEl(—z) (58)

is obtained, where Ei (—z?) is the exponential integral
defined as

X —u

e
” du. (59)

2

—Ei(-2) =J.

1z

5.3. Radial heat conduction in an infinite solid due to a
point heat source

The parameter b is set equal to 3/2 and equation
(33c) is used as the boundary condition at the origin.
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The coefficient and dimensionless temperature are
determined as

['(a) F(p+1)
B= = 6
8z’ Ja  8n¥i/(p+1) (60)
r(p+l) -t 3 )
= e e TP | e
7 . wths)
F(p+1)

=§FTE;:;€*W@+;&5) (61)
N :

where p 2 1/2 must be satisfied.
In a particular case where

p=\n+1) (62)
equation (61) becomes
2:1— l 3
O=—— I'<'-H;—>i"+ Yerfc(z). (63)
n/(2n+6): 2
Setting n = 0 in this equation gives
jerfc (z). (64)

= 4./(6m)=

This is substantially the same solution that Paterson
[4. 5] derived and applied to the analysis of a moving
boundary problem. It should be noted that p = 1/2
for n = 0, and hence equation (64) is the solution for
the case where the strength of the point heat source is
varied as the square root of time but not as the step
function of time.

6. SIMILARITY SOLUTIONS TO MOVING
BOUNDARY PROBLEMS WITH PHASE CHANGE

As explained in Section 4. if there are boundaries
other than the origin and infinity, they must be moving
as the square root of time for the similarity solution
to exist. If the value of - at a moving boundary at
r =r, is denoted by z, the above condition is rep-
resented as

Zm =% OF Iy =2a/(x1) (65)

whether or not there is a phase change on the bound-
ary.

Now let phases 1 and 2 be two different phases of
the same substance. A heat source of strength ¢, is
assumed to be at the origin, which is in phase 1. If
there is a phase change on the boundary between
the phases. the boundary necessarily moves and its
position is denoted by r,. Then the following con-
dition [10] can be imposed at the moving boundary:

eT, . T,

) rm
—ty— + _
cr

dr

1A =P (66)
where p is the density of the substance. L is the latent
heat of phase change, and subscripts 1 and 2 designate
phases 1 and 2, respectively.

If the similaritv solution to heat conduction is also

K. Mizuxkami and K. Futacami

applicable to solve the phase change problem, the
temperature in phase 1 can be expressed as
Ty = L0600 0 (@, b)) (67)

-l
where =, = r/[2/(x,0)]. Since the motion of the
boundary ought to obey equation (65), its temperature

T, is obtained by setting =, = « in the above equation
as

Tm = ;"]_S(K|T|)l—h®|(ahb;“) oc Pt =g (68)
d]|

where

p=p+l->b. (69)

As explained in Section 4, the temperature in phase 2,
which is caused by temperature variation at the mov-
ing boundary, can be expressed as

T,=T,0ab;z,) (70)

where -, = r/[2\/(Kzt)]. It is obvious from equations
(20) and (20’) that

a =p+l an

5 =p/+b- (72)

Further, upon taking account of equation (69), the
following relation is derived:

(73)

a, = da,.

Therefore both temperatures are expressed in terms
of the same functions.

When there is a phase change, few values are per-
mitted for p due to the restriction of equation (66).
Substituting equations (67). (70) and (65) into equa-
tion (66) and using equation (68) leads to

20Lk,x
1—b _
gs(iciT)) =% (74)
where
do, Liy (4O,
K= —<G:’T>;I=,+ i @|((1|,b.1)<d:2 -
(75)

and u = ,/(x,/k,). Since the right-hand side of equa-
tion (74) is constant, the following relation is necess-
ary for this equation to hold:

p=b—1. (76)

Evidently, the temperature at the moving boundary
must be constant.

As a summary, only one similarity solution exists
in each coordinate system to the phase change
problem. The corresponding heat source is ¢” x 1/t
namely T, = constant in the linear coordinate system,

* = constant in the cylindrical coordinate system,
and g = |/t in the spherical coordinate system. This
fact is already known [11}.

Tt is well known that there are solutions to the phase



Confluent hypergeometric solutions of heat conduction equation

change problem in which the boundary moves with
its position proportional to the square root of time.
These solutions, including the Neumann solution [12),
resulted from the application of the similarity solu-
tion.

7. CONCLUSION

A unified expression has been presented for the
similarity solutions of unsteady one-dimensional heat
conduction equations in the linear, cylindrical and
spherical coordinate systems. Its application to the
moving boundary problem has also been discussed.

Provided that boundaries are located at the origin
and infinity, or otherwise move as the square root of
time, and in addition, the strength of the heat source
is a power function of time, the heat conduction equa-
tion can be transformed into an ordinary differential
equation (similarity equation) called Kummer’s equa-
tion. Its solution can be represented in terms of the
confluent hypergeometric functions.

The confluent hypergeometric solution has two par-
ameters. One depends on the space dimension alone,
the other mainly on the variation of the strength of
the heat source.

For the already known similarity solutions which
are expressed in terms of other functions, the cor-
responding confluent hypergeometric expressions
have been shown.

To apply the similarity solutions to solve a moving
boundary problem is equivalent to premising the
boundary moving as the square root of time. If there
is a phase change on the moving boundary, only one
similarity solution is permitted in each coordinate sys-
tem.
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APPENDIX A. SELECTED PROPERTIES OF
CONFLUENT HYPERGEOMETRIC
FUNCTIONS

Selected properties of the confluent hypergeometric func-
tions are listed below. Those who require more details should
consult refs. {13, 14].

L. Kummer's function and Kummer's equation
Kummer's function ®(a, b: x) is defined as

T {a),
Ga,b;x) = “; B (AD)
where bh#0,-1,-2,..., (@o=1, (a) = ta+k)

M) = ala+1) - {a+k~1). Kummer's function 15 a par-
ticular solution of Kummer’s equation

& dr
il Y e g == b
X o + (b '\)d.\: ar =0, {A2)
If #2,3,4...., the following function also satisfies Kum-
mer's equation :
r=x'"""Q(l4+a-5b2-h.x). (A3)

2. The confluent hypergeometric function of the second kind
The function ¥(a, b; x) is defined as

SN e NP
‘P(a,b,x)—r(l+a_b)®(a.b..x)
re-1 ., ,
X —b,2—b:x). (Ad
T x'"PO(l+a-b2~b:x). (Ad)
Evenifb=n+1 withn=10,1.2,..., it is analytic and can
be written as
. (=D & (apxt .
Ya,n+1:x) = Tasn kz_:,)(tz+k)!k! Wla+k)
—y(1+k)—P(n+1+k)+log x}
=l Wb — 1V (=
i (- DYn—k—Dla ")kx""”. (AS)

T@.5 k!

For n = 0, the second term on the right-hand side of the
above equation is set equal to zero. y(x) is the di-gamma
function or the logarithmic derivative of the gamma
function, namely

L d I(x).

Y(x) =

3. General solution of Kummer's equation
The general solution of equation (A2) can be written as

v = A®(a,b;x)+BY(a.b;x) (A7)
where 4 and B are coefficients. 1t may also be written as
p=Ax""Q(l +a~b.2~b;x)+B ¥(a.b:x) (AR)

where 4" and B’ are coefficients.
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4. Differentiation formulae

d a
Etb(a.b,x) = EQ(a+l.b+l;x) (A9)
d b—a
g;{c"‘tb(a,b;x)} = -——b—e“(b(a.bJr I:x) (Al0)
—d—‘l‘ b; > 4 1,b+1; All
= (@, b;x) = —a¥(@+1,b+1;x) (All)
d
a-x-{e"‘ Y(a,b;x)} = —e *¥(a,b+1:x). (Al2)
5. Asymptotic expressions as X —»
=t . . -
0(a,b,x)-—r(a)e”x‘ {1+0(x""} (Al3)
Wa,b;x) = x*{1+0(x"H}. (Al4)
6. Asymptotic expressions as x — 0
®(a,b;x) = 1 +0(x). (A15)
Ifb>2
Y(a,b;x) = E-(.I{,—('—;)I—)x“”+0(x"”). (Al6a)
Ifb=2
Y(a,b;x) = rif’(;)” x'"*4+0(log x). (Al6b)
If2>6>1
l}*(a,b;x)=E(lf’(a;)”x'-u-oa). (Al60)
Ifh=1
{
Yia,b;x)= - m{log x+y(a)+2y} +O(x log x)
(Aled)

where y is Euler’s constant.
If1>56>0
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¥(a,b;x) = f{l(ﬁ-l—a% +0(x' ). (Al6e)
7. Kummer's transform

Qla,b;x) = Vb—a,b; ~x). (Al7)

8. Other properties
Y(a,b;x) = x" "Wl +a~b,2—b;x) (Al8)
®(a,a;x) =¢* (Al9)
—l—-e“’ Y. & x?) = erfe(x) (A20)

Jr
e "W, 1:x) = —Ei(~x}. (A21)

APPENDIX B. PROOF OF EQUATION ({50)
Consider a function f£,(z) defined as
I (sl
LI ST 1.2
L) an e ‘P<—~2 .,,.)

where # is zero or a positive integer. If this function satisfies
the relations

(BY)

aq;fn(z) = —fo (2 (B2)
Ja(0) =0 (B3)
Jolz) =erfc(2) (B4)
then the following equation holds:
f(z) =1erfe(2). (B5)

Equation (B3) can readily be verified by using one of
the asymptotic expressions of the confluent hypergeometric
function of the second kind, namely equation (Al4) of
Appendix A. Equation (B4) is apparent from equation
(A20).

Differentiating both sides of equation (B!) and arranging
it gives

d Z Von o—2? f_t_! P
&ﬁv(z)""”“ﬁz € W( 3 ,é,a)

l s fn
= e e 3= Al 4 B 22
\/“2 ¢ (2,%' )

= ~fo (). (B6)
Thus f£,(z) satisfies equations (B2)-(B4). Therefore, equation
(B5) and accordingly equation (50) of the text hold.

SOLUTIONS CONFLUENTES HYPERGEOMETRIQUES DE L'’EQUATION DE LA
CHALEUR

Résumé—L'équation de la conduction thermique monodimensionnelle variable est transformée en une
équation appelée équation de Kummer dans les systémes linéique, cylindrique et sphérique. L’équation de
Kummer est résolue en termes de fonctions confluentes hypergéométriques et on obtient ainsi des solutions
de similarité. Ces solutions existent 4 condition que les frontiéres soient 4 P'origine et & P'infini, ou aussi se
déplacent proportionnellement au carré du temps et que I'intensité de la source de chaleur soit une fonction
puissance du temps. Pour les solutions de similarité déja connues en termes d’autres fonctions, on connait
les expressions des fonctions hypergéométriques confluentes. Si les solutions de similarité sont appliquées
aux problémes 4 frontiére mobile avec changement de phase, il existe seulement une solution unique dans
chaque systéme de coordonnées.
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Confluent hypergeometric solutions of heat conduction equation

ZUSAMMENHANGENDE HYPERGEOMETRISCHE LOSUNGEN DER
WARMELEITGLEICHUNG

Zusammenfassung—Es wird die instationire eindimensionale Warmeleitgleichung fir kartesische, Zylinder-
und Kugelkoordinaten in eine gewéhnliche Differentialgleichung transformiert—die Kummer'sche Gleich-
ung. Die Losung der Kummer'schen Gleichung wird in Form zusammenhéngender hypergeometrischer
Funktionen angegeben. Damit erhilt man Ahnlichkeitsldsungen. Diese Lésungen existieren unter fol-
genden Bedingungen: Die Kopergrenzen liegen bei Null und Unendlich, oder aber sie bewegen sich
proportional mit der Wurzel der Zeit ; die Ergiebigkeit der Wirmequelle ist eine Potenzfunktion der Zeit.
Fiir bereits bekannte Ahnlnchkeltslosungen werden die entsprechenden hypergeometrischen Ausdriicke
angegeben. Fiir den Fall. daB die Ahnlichkeitsidsungen der Wirmeleitung auf Probleme mit Phasen-
dnderung angewandt werden, existiert lediglich eine Losung in jedem Koordinatensystem.

CXOAAIMMNECA T’MNEPTEOMETPUYECKHE PEIIEHUA YPABHEHUA
TEIJIOMTPOBOAHOCTHU

Amnoraums—HecTaunoHapHOe ypaBHEHHE TeIUIONPOBORHOCTH NpeoGpasyerca B ofbikHoBeHHOE Rude-
PEHUHANBHOE, TaK HalbiBaeMOE ypaBHeHHe KyMMepa B CHCTEMaX NPAMOYTO/bHbLIX, LIHIKHAPHYECKHX H
chepuyecxux xoopamuat. [Tosydeno pewenue ypasHenus KymMmepa ¢ HCROMBL3OBAHHEM CXOOSIIMXCA
THNEpreoMeTpHYEeCKHX (yHXuMH, H TeM CaMbIM ONPEQCICHH ABTOMOIC/bHbIE pelueHus. JlaHHbie
PELUCHHA CYLUECTBYIOT NPH YCJIOBHM, YTO IPAHMLLI HAXOANTCA B Ha4a/le KOOPAMHAT K B GECKOHEYHOCTH
WIH Xe NBIXKYTCA TAKHM 06pa3’oM, YTO HX MOJIOXEHHA NPONOPUHOHAIBHLI XBAAPATHOMY KOPHIO M3
BPEMCHH, a TaKkKe NPH YCJIOBHH, YTO MOWIHOCTL HCTOYHHKA TEIUIa SRJSCTCA CTeneHHO# dyHxuueit
BpeMeHH. [lokasaHbi COOTBETCTBYIOLIME CXOAMILIMECS THNEPreOMETPHYECKHE 3ABHCHMOCTH IUIN YXe
H3IBECTHHIX 3BTOMOJENBHLIX PCLUCHHi, BhpaXeHHBX ueped apyrue Gyuxuun. B ciyvae npumenerns
aBTOMOJENBHBIX PellieHHA TEIUTONPOBOAHOCTH [T PEILCHAR 3a1a4 ¢ MOABHXHON rpaHHuci A $Ha3oBuM
NepexooM B XKak10#f CHCTEME KOOPAHHAT CYLIECTBYET TOJLKO ONHO pelueHHe.
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